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Abstract-This paper reports a theoretical investigation focusing on the interaction between f?lm con- 
densation and natural convection along a vertical wall separating a fluid reservoir from a fluid-saturated 
porous reservoir. The two reservoirs are maintained at different temperatures. The study consists of two 
parts: in the first part the condensation phenomenon takes place in the fluid reservoir and the natural 
convection phenomenon in the porous layer. In the second part, the opposite situation is considered. The 
main heat transfer and flow characteristics in the two counterflowing layers, namely, the condensation film 
and the natural convection boundary layer are documented for a wide range of the problem parameters. 
These parameters appear after boundary layer scaling of the governing equations. Important engineering 
results regarding the overall heat flux from the condensation side to the natural convection side are 
summarized in the course of the study. Finally, the effect of the thermal resistance of the wall constituting 
the interface separating the two reservoirs, on the overall heat flux from the condensation side to the 

natural convection side is determined. 

1. INTRODUCTION 

COUPLING between two distinct heat transfer modes 
through a solid boundary finds a host of applications 
in heat transfer engineering. The present paper focuses 
on the investigation of such coupling between film 
condensation on the one side of a vertical boundary 
and natural convection on the other side. The bound- 
ary of interest constitutes the interface between a fluid 

space on the one hand, and a fluid-saturated porous 
space on the other hand. This configuration occurs in 
thermal insulations, heat exchangers, buildings, cryo- 
genic equipment and grain storage. In addition, the 
geometry under investigation is of geophysical interest. 

The importance of the problem of thermal inter- 
action in natural convection flows has been recognized 
by several previous investigators [l-5]. Such flows are 
solely driven by temperature gradients, hence, they 
appear to be sensitive to temperature changes imposed 
in the domain in which the flows take place. Lock and 
Ko [l] have shown, via finite-difference calculations, 
that two counterflowing natural convection boundary 
layers coupled through a vertical wall constitute a 
heat transfer system noticeably different from that 
featuring a prescribed temperature or heat flux on the 
wall [2]. More recently, Bejan and Anderson report 
interesting results pertinent to natural convection 
interaction in three distinct geometries : at the inter- 
face between a vertical porous layer and an open space 
[3] ; at the interface between two porous layers [4] ; 
and at the interface between two fluid layers [S]. The 
problems in [3-S] are solved theoretically based on 
the Oseen-linearization method used first by Gill [6] 
who investigated natural convection in a vertical slot. 
The effect of the thermal resistance of the wall sepa- 

rating the two reservoirs was accounted for in refs. [4, 
51 while it was omitted for simplicity in refs. [l, 31. 
The approximate theoretical findings in ref. [5] agreed 
well with the more exact numerical calculations 
reported in ref. [l] in the limit of low wall thermal 
resistance. Sparrow and Prakash [7] investigated the 
effect of interaction between natural convection in a 
rectangular enclosure and an external natural con- 
vection boundary layer developing along one of the 
enclosure walls. These authors proved that such inter- 
action forces this wall to depart from the uniform 
temperature or uniform flux condition used in numer- 
ous basic research studies. In addition, the heat trans- 
fer and flow characteristics of the system in ref. [7] 
were noticeably different from those reported for the 
classical enclosure model [8, 91. 

In this study we focus on conjugate natural con- 
vection and film condensation along the impermeable 
interface of a porous layer and a fluid space. The study 
consists of two distinct parts: in the first part the 
condensation takes place in the fluid space and the 
fluid-saturated porous layer models an insulation sup- 
port separating the condensation space form its cold 
surroundings. In the second part our attention is 
shifted to the configuration where the condensation 
phenomenon takes place in the porous space. Here, 
the open space plays the role of the cold reservoir. 
Both parts of the study are analyzed based on the 
Oseen-linearization method for the natural con- 
vection side [6] and thin film analysis for the con- 
densation side [2, lo]. The solution is completed by 
matching the findings from each side on the wall. 
Unlike the classical problem of natural convection 
and condensation in classical fluids [2] and in porous 
media [l l-l 31 here, the wall temperature and the wall 
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NOMENCLATURE 

dimensionless group, equation (18) 
dimensionless group, equation (15) 
fluid specific heat at constant pressure 
dimensionless group, equation (23) 
Darcy number, equation (6) 
dimensionless group, equation (5) 
gravitational acceleration 
dimensionless group, equation (27) 
wall height 
latent heat of condensation 
permeability 
fluid thermal conductivity 
effective thermal conductivity of porous 
medium 
Oseen’s function 
dimensionless group, equation (22) 
Nusselt number 
Prandtl number, v/cl 
Rayleigh number based on the wall height, 

gPH3(Ts- T,)iva 
film Rayleigh number based on the wall 
height, equation (14) 
Darcy-modified Rayieigh number based 
on the wall height, equation (7) 
wall thickness, Fig. la 
temperature 
horizontal velocity component 
vertical velocity component 
horizontal Cartesian coordinate 
vertical Cartesian coordinate. 

Greek symbols 
OL Auid thermal diffusivity, k/pc, 

@P effective thermal diffusivity of porous 
medium, k,/pc, 

B coe&ient of thermal expansion 

; 
Oseen’s function 
boundary-layer thickness scale, Fig. 1 

5 condensation film thickness 

p viscosity 
V kinematic viscosity, p/p 

P fluid density 
0 wall thermal resistance parameter. 

Subscripts 

; 
coId 
condensation film 

1 liquid phase for condensation in open 
reservoir 

P porous 

Pl liquid phase for condensation in porous 
reservoir 

Pv vapor phase for condensation in porous 
reservoir 

S saturation 
V vapor phase for condensation in open 

reservoir 
W wall 
WL left side of wall 
wR right side of wall 
* dimensionless quantity for open reservoir 

condensation 
I pertaining to Part I of the paper 
II pertaining to Part II of the paper. 

Symbols 
* 

dimensional quantity 
dimensionless quantity for natural 
convection in open reservoir 
dimensionless quantity for condensation 
in porous reservoir. 

heat flux are unknowns to be determined by the prob- 
lem solution, The only study featuring this charac- 
teristic and relevant to conjugate condensation and 
convection we are familiar with, is ref. 114). In this 
reference, Sparrow and Faghri investigate the effect 
of external condensation on the heat losses from an 
internally cooled vertical tube. 

Results documenting the effect of finite thermal 
resistance at the interface of the two media on the 
heat transfer from the hot to the cold space are also 
reported in the course of the present study. 

2. MATHEMATICAL MODEL 

The configurations of interest are shown schema- 
tically in Fig. 1. Figure la depicts the arrangement 
pertinent to the first part of the study: a solid wall 

separating a porous from a fluid space. The fluid space 
contains vapor at saturation temperature, T,, and is 
the warmer of the two spaces. The porous space is 
fluid saturated and is maintained at T, where T, < T,. 
The cooling effect of the porous layer is felt by the 
vapor in the warm reservoir through the diathermal 
wall. It is assumed that this cooling effect results in 
fihn condensation in the open space. At the same time, 
the heating effect of the open space initiates an upward 
moving, buoyancy driven, fluid jet in the wall vicinity 
within the por’ous layer. The two fluid jets, i.e. the 
condensation film and the natural convection bound- 
ary layer, move in opposite directions while exchang- 
ing heat through the solid interface in a manner similar 
to the operation of a counterflow heat exchanger. 

The description of the configuration shown in Fig. 
lb, which illustrates the problem tackled in the second 



Open Space Porous Space 

Condensation Natural Convection 

Conjugate film condensation and natural convection 

Porous Space Open Space 
Condensation Natural Convection 

(a) (b) 

FIG, 1. Schematic of the problem of interest. (a) Natural convection in the porous side of the interface and 
condensation in the open side. (b) Natural convection in the open side of the interface and condensation 

in the porous side. 

part of the study, is analogous to the above with the 
exception that in this case the condensation phenom- 
enon takes place in the porous reservoir which is kept 
at T,, and the natural convection phenomenon in the 
open reservoir which is kept at T,. Next, both parts of 
the problem of interest are formulated mathematically 
by considering the natural convection side and the 
condensation side separately. 

Part I. Porous space natural convection and open space 
condensation 

la. Porous space. The Brinkman modification of 
the Darcy flow model 111, 121 is used to describe 
the natural convection phenomenon in the porous 
reservoir. The Brinkman model, unlike the Darcy 
model, satisfies the no-slip condition on a solid bound- 
ary and has been proven appropriate for flows near 
solid boundaries [15-17J. The dimensionless boundary- 
layer equations describing the conservation of mass, 
momentum and energy at each point in the porous 
medium are : 

F+aO,() 
ax ay (1) 

au 
-++g 
ax (2) 

aT c?T d=T 
uax+vay=ax2 (3) 

The non-dimensionalization in (l)-(3) was based on 
the following definitions : 

(4) 

v = [@.,H,(H1a, l’y]’ T = 
f+f(T,- T,) 

T,- T, 
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The dimensionless quantities in equation (4) were 
defined based on boundary-layer scaling for natural 
convection problems (see for example refs. [l&20]). 
The details of such scaling are omitted here for bre- 
vity, however, attention should be drawn to the fact 
that the scale of the boundary-layer thickness (6 _ 
HRa; ‘I*) was used to non-dimensionalize the hori- 
zontal coordinate 2, Parameter E in equation (2) is 
given by 

E= DaRa, (5) 

where Da and Ra, are the Darcy number and the 
Darcy-modified Rayleigh number, respectively 

Da=K 
HZ’ 

Ra 
P 

= KgB(Ts - T,)H 
vtlp . 

Equation (2) was derived by eliminating the pressure 
gradient between the x and y momentum equations 
and by taking into account the Boussinesq approxi- 
mation for natural convection, whereby the density 
was assumed to be constant everywhere except in the 
buoyancy term of the momentum equation where its 
dependence on temperature was described by 

P = ~011 -P(f- TJI. (8) 
In the above equation subscript zero stands for a 
reference state. All the symbols in equations (l)-(g) 
not defined in the text are defined in the Nomencla- 
ture. The boundary conditions for the porous medium 
side in Part I of this study are 

u=v=o, T= T,(y) atx=O 

0 = 0, T= -l/2 atx+ co. (9) 

One more condition at the interface (x = 0), namely, 
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the heat flux continuity, will be discussed after the 
mathematical formulation for the condensation side 
has been completed. 

Ib. Open space. The classical solution for film con- 
densation along a vertical wall 12, lo] yields 

v* = 
i > 

TX* +2 

T = (-++T,+ + T, 
l 

(11) 

@!L 4-T, 

dy I +~(f- T,J‘ 
(12) 

The dimensionless parameters for the condensation 
side are defined as follows 

(x*, 5) = (2, &WRa; “.‘, 

v = v  ̂ dP,-P”) 
* I[ . (13) 

fll 
(IIRa, “y 1 

In the above definitions Ruf is the film 

her, 

J 

Rayleigh num- 

Ra, = 
ff 39fPi - P")h, 

hv,Vs- Tc) 

and B is a dimensionless parameter 
degree of subcooling in the film 

(141 

measuring the 

(15) 

Subscripts 1 and v stand for liquid and vapor phases, 
respectively, and h, is the latent heat of condensation. 
It is worth noting that solution (IO)+ 12) satisfies the 
following boundary conditions 

u* = 0, T= T,(y) atx, =0 

S-0 T---f atx, = -[. (16) 
ax* - ’ 

Implicit in equations (9) and (i 6) is the assumption 
that the solid wall at the interface of the two reservoirs 
is thin or of large thermal conductivity. Hence, the 
temperature drop across the wall is neglected com- 
pared with the reservoir-to-reservoir temperature 
difference. The effect of finite thermal resistance at the 
interface will be investigated in a later section of the 
study. Based on the above ass~ption the last mat- 
ching condition at the interface, namely, the heat flux 
continuity statement reads 

where 
A_&Ra;“2 

k, Ra; 

At this point, the first part of the study is thoroughly 
formulated. Before proceeding to the solution of Part 
I, the second part of the study will be formulated next. 

Part II. Open space natural convection, porous space 
condensation 

The pertinent dimensionless boundary-layer equa- 
tions and boundary conditions for the natural con- 
vection side of the system shown in Fig. lb have been 
reported in refs. [3, 5, 211. Hence, they are omitted 
here for brevity. All the details pertinent to the present 
problem were included in ref. [21]. It is worth stressing 
that much like in refs. [3,5] the momentum equations 
in the present study are accurate in the limit where 
Pr > O(1) (the inertia terms have been neglected). It 
has been shown however 13, 5], that neglecting the 
inertia terms in the momentum equation yields accept- 
able results (accurate within 10%) even for Pr = O(1). 
In this section, only the mathematical model for the 
condensation side will be described. 

The phenomenon of two-phase flow in porous 
medium is a complex one because of the fact that the 
pore spaces are filled partly with vapor and partly 
with liquid. To account for this fact the concept of 
relative permeability is introduced in the math- 
ematical modeling of two-phase flow in porous 
medium, in conjunction with existing models for 
single-phase convection such as the Darcy model and 
the Brinkman-modified Darcy model. However, as 
discussed by Cheng [22], due to the mathematical 
complexity of the governing equations for two-phase 
flows in porous media involving the concept of relative 
pe~eability, analytical solutions can be obtained 
only after the following simplifying assumption : the 
condensate and the vapor are separated by a distinct 
boundary with no two-phase region in between. 
Hence, the difficulty associated with the relative per- 
meability is removed and the single-phase equations 
can be applied separately to the vapor and the con- 
densate. This assumption was also used by Parmentier 
]23] to study the problem of film boiling in porous 
medium. 

The solution for thin film condensation in the 
porous side of the interface of the system shown in 
Fig. lb was obtained by using the Brinkman flow 
model for the condensate zone and the above sim- 
plifying assumptions. The procedure is identical to 
that used for classical fluids [2, lo] therefore, no inter- 
mediate steps are shown here. However, all the inter- 
mediate steps are reported in ref. 1211. The final results 
read 

v = cash K- “‘(c+ 2) _ 1 
cash K- I”[ 1 (19) 

T= -(h-r,);+ 7-w (20) 

$ = -f(sech’(No-l)(& 
W 

+ D 

(2-N*~)coshiV~-2 

’ - 2Nrcosh N[(tanhNr-- Nf, (21) 
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where 

N = Da- 112 &- 112 
Pf 7 

D = c,(T,- TJ 
h fg 

The Darcy-modified film Rayleigh number for porous 
medium condensation in equation (22) is defined as 

Ra 

Pf 
= HK@, -p&h,, 

kpvp(Ts - Tc) . 

The non-dimensionalization of equations (19)-(21) 
was carried out based on the following definitions 

(X, c) = (a, &HRa,f I”, 

The dimensionless temperature was obtained via equ- 
ation (4). It is worth noting that solutions (19)-(21) 
satisfy a set of boundary conditions analogous to 
equation (16) of Part I of this paper. The last condition 
to be satisfied is that of continuous wall heat flux 

where 

G=k,,Ram”” 
k Rag’/” 

(26) 

(27) 

f = x/(HRa- ‘j4). (28) 

In this part of the study as well, the thermal resistance 
of the wall at the interface has been neglected for 
simplicity. The effect of finite wall thermal resistance 
will be investigated in a later section. 

3. THEORETICAL SOLUTION 

The same solution methodology was employed to 
attack both parts of the study. Therefore, a detailed 
description of the solution procedure for the first part 
of the study only will be outlined and key results of 
the solution procedure for the second part will be 
reported. Since the expressions for the temperature 
and the velocity distributions as well as the con- 
densation film thickness for the left side of the con- 
figuration shown in Fig. 1 a have been reported in the 
previous section, equations (lo)-(12) here, we will 
focus on the Oseen-linearized solution for the porous 
space. According to the Oseen linearization method 
[3-6, 241 the horizontal velocity component u and 
the temperature gradient in the vertical dT/ay are 
assumed to be unknown functions of altitude, uA(y) 
and Ta(y) in the energy equation (3). Based on this 
assumption and eliminating aT/ax and a2T/ax2 from 
equation (3) by employing equation (2) we obtain 

The solution of equation (36) has the form 

2, = f: An(y)e-An(Y)X 
“=I 

(30) 

where 1, (n = 1,. . ,4) are the four roots of the charac- 
teristic equation 

These four roots are, in general, complex. In fact, they 
constitute two pairs of complex conjugate numbers. 
As has been discussed in detail in previous studies [3- 
6, 241 only the roots with positive real parts satisfy the 
condition of vanishing v at infinity. 

Hence 

v = A,(y)e-“l”+A,(y)e-“2”. (32) 

In addition, the vertical velocity component should 
vanish at the wall. Taking this condition into account 
and substituting the resulting expression for u into the 
momentum equation (2) we can solve for the tem- 
perature distribution. The remaining constants of 
integration are obtained by applying the boundary 
conditions for the temperature on the wall and at 
infinity. The final expressions for the temperature and 
the velocity fields read 

(33) 

T= 
T,i-l 
pe-mx [sinyx 
2myE 

-E{(m2-y2)sinyx-2mycosyx}]-2 (34) 

where m and y are unknown functions of JJ con- 
stituting the real and imaginary parts of 1,, L, respect- 
ively (A,,, = m f iy). Two additional conditions for m 
and y are obtained by satisfying the energy equation 
on the wall (x = 0) and after it is integrated over the 
entire boundary-layer thickness. These conditions are 

(35) 

T,+f = - m (y’E-- 3m’E+ 1). (36) 

Next, combining the flux continuity condition (17) 
with the temperature relations (1 I), (34) yields 

T,-: 
A--- 

T,+: 
= &E(y’E-3m2E+ 1). (37) 

At this point we are left with four equations (12), (35), 
(36), (37) containing four unknowns (4, T,, m, y). 
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Noting that we can use equation (35) to eliminate y 
from equations (36) and (37) yields three equations 
containing three unknowns (i, T,, m). The number 
of equations is reduced further by solving equation 
(37) for m explicitly and substituting the result into 
equation (36). The final set of two equations with 
two unknowns T, and [ is reported in the Appendix 
[equations (Al)-(A3)]. This set of equations is solved 
numerically to yield the wall temperature distribution 
and the condensation film thickness. 

The two counterflowing boundary layers exchange 
heat much like in a very long counterflow heat ex- 
changer. Hence, the wall temperature T,(y) assumes 
values between the two reservoir temperatures, -f 
and f. It was found that when equations (Al) and 
(A2) were cast in a different form, i.e. by using the 
vertical coordinate y as the independent variable 
(which appeared to be the natural choice), the RHS 
of the equation corresponding to (A2) blew up at 
y = 0 (Tw = -i). This difficulty was overcome by 
using the wall temperature as the independent variable 
and the condensation film thickness, [, and the 
altitude, y, as the dependent variables. The sim- 
ultaneous numerical integration of equations (Al) 
and (AZ) was performed by using the Runge-Kutta 
method 125,261. To start the integration, initial values 
{at y = 0) for both y and < were required. The initial 
value of y is known : y = 0. However, the value of 
the condensation thickness i at y = 0 is not known. 
Consequently, an iterative process was followed : the 
initial value of < was guessed and the integration in 
T, followed next by starting at T, = - 4 and by 
advancing in small steps in T, until the other extreme 
of the T,-range (Tw = f) was reached. The value of 

y at which T, = i was then checked. The above pro- 
cedure was repeated by adjusting the initial value of 
< so that eventually T, = $ corresponded to y = 1. 
The ‘step’ in T, was small enough so that reducing 
this step further had no effect on the results. It was 
found that using 5000 equally sized steps to bridge the 
gap between - 12 < T, G 1 yielded results accurate 
to the fourth decimal point. 

The solution of the problem in the second part of 
this study was carried out by the above procedure as 
well [21]. After manipulations similar to Part I of this 
study two equations are obtained, (A4) and (AS), 
which are solved nume~caliy to yield y and <. 

4. RESULTS AND DISCUSSION 

The main results of the first part of the study are 
shown in Figs. 2-6. Figures 2 and 3 show rep- 
resentative velocity and temperature distributions in 
the counterflowing layers on both sides of the wall at 
midheight (y = 4). Parameter A has a profound effect 
on both temperature and velocity fields. As A becomes 
larger than unity the temperature drop across the 
natural convection jet in the porous layer exceeds the 
temperature drop across the condensation film (Fig. 
3). Based on this behavior the vertical velocity 
increases in the porous side and decreases in the open 
side (Fig. 2). Qualitatively similar, but weaker, effects 
on the velocity and temperature distributions are 
observed when varying B and E. With reference to 
parameter E in particular, it is found that decreasing 
E shifts the velocity closer to the interface (Fig. 2). 
This result makes sense physically since small values 
of E correspond to small values of the Darcy number 

Q V 

i 
0.4 

t 
AT 10,&O. 1 ,E= 1 

FIG. 2. Velocity profiles in the natural convection boundary layer (right) and condensation film (left) at 
mid-height for representative values of A, B and E. The solid lines are for E = 1, B = 0.1 and depict the 
effect of A. The dashed lines correspond to E = 1, A = 1 and the dash-dot lines correspond to B = 0.1, 

A = 1. 
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FIG. 3. Temperature profiles in the natural convection boundary layer (right) and condensation film (left) 
at mid-height for representative values of A, B and E. The notation for the lines is identical to that used 

in Fig. 2. 

if Ra, is held fixed. As Da decreases we approach the 
limit where the Darcy flow model holds [ 11,12, 15-l 7, 
241. In this limit the no-slip condition at the interface is 
not satisfied and the velocity maximum in the porous 
side occurs on the interface. 

Figures 4 and 5 show examples of the wall tem- 

1 

0.6 

0.6 

Y 

0.4 

0.2 

0 

-- A=O.~,BKI.~,E=~ 

FIG. 4. The wall temperature distribution for representative FIG. 5. The wall heat flux for representative values of A, B 
values of A, B and E. The notation for the lines is identical and E. The notation for the lines is identical to that used in 

to that used in Fig. 2. Fig. 2. 
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0.E 

0.f 

Y 

0.4 

0.2 

0 

A=1O,B=o.I,&1 

-1 -A=l,BdiE=lo 

_.-A=l,B=O.l,E=l ;I 
A=O.lj3za1js:1 

perature distribution and the wall heat flux. The wall 
temperature distribution increases with height in an 
approximately linear manner. Near the two ends of 
the wall where the boundary-layer approximations 
incorporated in the present study break down, the 
wall temperature departs from its linear distribution 

0 

-(dTldx)x=o 

2 
2 
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and assumes the values af the reservoir temperatures 
(Fig. 4). Increasing A yields a more uniform wall 
temperature distribution. The trend shown in Fig. 4 
implies that as A becomes increasingly large the wall 
assumes the saturation temperature of the con- 
densation side. This result is also supported by the 
temperature profiles shown in Fig. 3. Examining the 
definition of parameter A, equation (18), indicates 
that in the limit of large A the condensation phenom- 
enon dominates over the natural ~onvG~tion phenom- 
enon, hence, the above result makes sense physically. 
Increasing 3 and E also forces the wall to take on 
increasingIy higher temperatures. With reference to 
the heat flux dist~butio~ at the interface, Fig. 5, small 
values of A yield a practically independent-of-ahitude 
heat ffux. Increasing A and B enhances the local heat 
flux. Near the two ends of the interface the heat flux 
blows up. The effect of parameter E an the x-tem- 
perature gradient at the wall is opposite from the 
effect of A and B, i.e. increasing E: decreases the x- 
temperature gradient. More comments on the effect 
of E on the heat transfer through the interface will be 
discussed in connection with Fig. 6. 

In Fig. 6 attention is shifted to obtaining heat trans- 
fer results of en~n~~~g significance. To this end, the 
Nusselt number is defined as follows 

where Qi is the total heat flux through the wall 
obtained by integrating numerically the local heat flux 
over the entire height of the wall. As commented in 

the discussion relevant to Fig. 5, the toeal heat Flux is 
singular at y = 0,l. However, the overall heat flux 
through the wall is finite. Similar behavior of the heat 
Rux integral is reported in refs. [3-51. Increasi~~g A 
while keeping the values of E and B constant enhances 
heat transfer until a plateau is reached for large values 
of A. This plateau corresponds to the case where the 
wall temperature is identical to the temperature of the 
condensation reservoir (r, = f). In the limit of small 
A the wall assumes the cold reservoir temperature. 
Setting T, = - f and repeating the analysis in the 
condensation side yielded an asymptotic expression 
for the Nusselt number 

This expression for B = 0.1 is plotted in Fig. 6. 
Clearly for A < 0.1 equation (39) is in excellent agree- 
ment with the numerical findings. The validity of 
equation (39) is also justified by the fact that in the 
extreme B = 0 and for kl = k, it becomes identical to 
the Nusselt expression reported by Rohsenow [2, lo] 
for film condensation along a constant temperature 
wall (Nu = 0.943~~~~4~. 

The points denoted by triangular symbols cor- 
respond to the case A = 1, E = 1 and illustrate the 
effect of B on the overall heat transfer through the 
interface. An enhan~ment in the overall heat transfer 
is observed with increasing the subcooling parameter 
B. However, this effect is minimal compared to the 
impact of the heat flux parameter A. 

‘:z::r: 
-.I 

fi E=l,A=l 

10 1 10 

A, or 6 , or E 

FIG. 6. Summary of heat transfer results documenting the effect of parameters A, Band Eon the overall 
heat flux from the condensation side to the natural convection side. 
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The importance of parameter E is also illustrated 
in Fig. 6 by the square symbols. Increasing E causes 

a decrease in the value of NuRu; I”. Examining the 
definition of E, equation (5), we realize that, if Da is 
fixed, increasing E is equivalent to increasing Ra,. 
Therefore, it is reasonable to expect a respective 
increase in the overall heat transfer through the wall 
{Nu,). It can be easily proved by using the values of 
Nu,Ra -“2 reported in Fig. 6 as well as the definition 
of E, equation (5), that such increase indeed takes 
place. However, the dependence of Nu, on Ra, is 
weaker than Ra, , It2 thus explaining the decrease in 
NulRa-‘~Z with increasing E. 

The main results of Part II of this paper, pertaining 
to the geometry in Fig. 1 b were qualitatively similar 
to the results of Part I. In particular, the effect of 
parameters G, D and N is analogous to the effect of 
parameters A, B and E, respectively [21]. To avoid 
repetition, only the heat transfer findings for Part II 
will be discussed. These findings are reported in Fig. 
7. The Nusselt number is defined in a manner anal- 
ogous to equation (38). 

en 
Nu1i = k(T, - T,) 

where k is fluid conductivity in the natural convection 
side. The rest of the quantities have been defined 
earlier. As shown in Fig. 7, parameters G and D 
affect the overall heat transfer much like parameters 
A and B in Part I. In the limit of large G the wall 
takes on the temperature of the condensation reser- 
voir (Tw = 8. Focusing on the natural convection 
(open) side and repeating the analysis while keeping 

T, = $ yields an asymptotic analytical expression 
for the Nusselt number [3] 

Nun = 0.621 Ra’j4. (41) 

Expression (41) agrees well with the numerical results 
for G > 10. In the limit of small G the wall temperature 
becomes T, = - 4. Due to the algebraic complexity 
of the equations in this limit it is not possible to obtain 
an analytical relation for Nuii. However, numerical 
results for Nu for small values of G (G -C 0.1) and for 
ImW = -1 proved to be practically identical to the 
values of Nu,, reported in Fig. 7. Examining the effect 
of parameter N we see that increasing N increases 
Nu Ra-‘14. II 

5. FINITE THERMAL RESISTANCE 

AT THE INTERFACE 

In this section the presence of a wall with finite 
thermal resistance at the porous-open interface is con- 
sidered. In this case the two sides of the wall are at 
different temperatures, f_,,, and F.+,;, where L and R 
stand for left and right, respectively. The x-tem- 
perature distribution in the wall bridging the gap 
between fW;, and ?,,,, is linear. In addition, the heat 
flux at each side is continuous. Using the heat flux 
continuity condition at the condensation face of the 
wall (for simplicity), a relation between fW,, and fWa 
is obtained. This relation for the first part of the study 
reads 

1 i- 

ed4lf 
------o---- 
:: 

a is a 6 0 n : 

0 0 

o i&O. l,N-1 

q W.l,G=l 

G,aD,or N 

FIG. 7. Summary of heat transfer results. The effect of G, D and N on the overall heat flux across the 
interface. 
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FIG. 8. The effect of the thermal resistance parameters w, and 
o,, on the wall temperature distribution. The solid lines 
illustrate the effect of IS, for A = 1, B = 0.1, E = 1 and the 

dashed lines the effect of oII for G = 1, D = 0.1, N = 1. 

k,t 
0, = 

HRa; ‘j4k w 

where oi is the wall thermal resistance parameter. 
In the second part of the study the corresponding 
relations are 

T 

WL 
= Td+0.5~1 

%+% ’ w 

011 = 
k,,t 

HRa-“‘k ’ (45) 
Pf w 

Note that as wi, wii decrease, equations (42) and (44) 
respectively, reflect the fact that the wall thermal 
resistance is negligible. 

Next, the matching conditions for the heat flux at 
the wall need to be rederived to take into account 
the fact that there is a temperature gradient in the 
horizontal direction within the wall [21]. Finally, the 
wall temperature r, should be replaced by TwL in the 
equations relevant to condensation and by TwR in the 
equations relevant to natural convection. The remain- 
der of the problem formulation remains unchanged. 
The numerical solution proceeds as before with 
TWLt TwR connected via equation (42) for Part I and 
equation (44) for Part II of the problem. 

The main results documenting the effect of finite 
thermal resistance at the interface are shown in Figs. 
8 and 9. The solid lines in Figs. 8 and 9 correspond to 
Part I and the dashed lines to Part II of the present 

0.4 

12 

F1~.9.Theeffectof~~,(solidlineforA= l,B=O.l,E= 1) 
and w,, (dashed line for G = 1, D = 0.1, E = 1) on the overall 

heat flux through the interface. 

study. In both cases, as expected, increasing the wall 
thermal resistance reduces the wall temperature at all 
points along the vertical, relative to the zero thermal 
resistance limit (Fig. 8). The overall heat flux through 
the wall decreases with increasing the wall thermal 
resistance (Fig. 9). The impact of the thermal resist- 
ance on the Nusselt aumber in both parts of the study 
becomes less pronounced for CO, or w,i greater than 
approximately 5. 

6. CONCLUSIONS 

This paper reported a theoretical study on the 
phenomenon of interaction between film con- 
densation and boundary-layer natural convection 
along the interface between a porous and a fluid space. 
Two distinct configurations were investigated. In the 
first configuration the natural convection phenom- 
enon evolved in the porous space and the con- 
densation phenomenon in the open space. The second 
configuration represented the opposite situation. The 
Brinkman-modified Darcy model was used to describe 
the flow in the porous medium. This model satisfies 
the no-slip condition on the solid wall and is believed 
to be appropriate for flows in the neighborhood of 
solid boundaries. Representative results for the wall 
temperature, the wall heat flux and the temperature 
and velocity variation across the natural convection 
boundary layer, and the condensation film were 
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reported in the course of the study. The heat transfer 
phenomenon across the interface is completely 

described by dimensionless parameters A, B and E in 

the first part of the study, and parameters G, D and 
N in the second part. Out of the above two groups of 
dimensionless parameters, A and G appear to have 
the strongest impact on the heat and fluid flow charac- 
teristics of the problem. Dimensionless group A meas- 
ures the heat transfer effectiveness of the condensation 
film in the open space relative to the natural con- 
vection boundary layer in the porous medium. Dimen- 
sionless group G, on the other hand, weighs the heat 
transfer effectiveness of the condensation film in the 
porous medium relative to the open space natural 
convection boundary layer. It was proved that large 
values of A or G (A, G + co) correspond to the case 
of natural convection along a wall at constant tem- 
perature, that of the condensation reservoir. Similarly, 
small values of A or G (A, G -+ 0) are relevant to 
film condensation from a vertical wall at constant 
temperature, that of the natural convection reservoir. 
Asymptotic analytical expressions for the overall heat 
transfer rate through the wall for small values of A 

[equation (39)] and large values of G [equation (41)] 
were also reported and found to be in agreement with 
the numerical calculations for A < 0.1 and G > 10. 

In the last part of the paper the presence of a wall 
with finite thermal resistance at the interface was con- 
sidered. The effect of this thermal resistance was 
illustrated by means of the wall thermal resistance 
parameter wr for the first part of the study and wu 
for the second part. As expected, increasing w, or 

wrr reduces the heat leak from the warm to the cold 
reservoir. 
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APPENDIX 

dy all13U+N~-T.J1 
dTw alli’[l+B(:-T,)l-a,(T,-:) 

(AlI 

4 all(Tw-i) 
dTw a,li’[l+B(~-T,)l--a,(T,-t) 

642) 

where 

a, = 4AE 

a, = (T,-0.5)/[(T,+0.5)[] 

a, = a,a2 

a4 = (16Efa:)“’ 

a, = a,-a,+8E/a, 
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2a,a, -(a: +a:) 
(16 = 

a4 
g = { -r(sech*N[- 1)[2N[cosh N[(tanh N&No 

+D(f-T,)(l-2coshN[-N’fcoshN~] a, = a:-a,a, 

a,a,+(a,+8E)a, 
a, = 

as 

x214(T,-f)(t+T,)4(2-T,)} 

+ {(2G)4($- T,)“[(sech* NC- 1) [2N[cosh N[ 

(T,+0.5)as x(tanhN[-No+D(:+T,,.)(l-2coshNe 
a9 = 

i -N2~*cosh Nn]+3(:+T,)‘(:-7’,$ 

a, x [2N[cosh N[(tanh N[- No]} (A4) 
-~ 

al0 - (QO.5) 

a,, = 2a,-a,, 

a,, = rasa,A(r,-o.5)l/[(r,+0.5)11 

$5 {2~‘(7-,-f)(7’,+:)5(2-7-~)[2N~coshN~ 
w 

x (tanh NT- No]}/{ (2G)“(: - T,)6% 

x (sech’N(- 1)[2N[cosh N[(tanh N[- No 

al3 
a 14 =E 

(A3) 

+3(t + T,)‘(:- T,)‘[2N[cosh N[(tanh N&No]}. 

(A5) 

CONDENSATION EN FILM ET CONVECTION NATURELLE CONJUGEE 
A L’INTERFACE ENTRE MILIEU POREUX ET ESPACE OUVERT 

RbumLOn d&it une etude thtorique centree sur l’interaction entre condensation en film et convection 

naturelle le long dune paroi verticale separant un volume de fluide d’un milieu poreux sature de fluide. 

Les deux reservoirs sont maintenus a des temperatures differentes. L’itude est en deux parties: dans la 

premiere, le phenomtne de condensation prend place dans le reservoir de fluide et la convection naturelle 

dans la couche poreuse. Dans la seconde partie, on considire la situation oppos&e. Les principales carac- 
teristiques de couches a contre-courant, le film de condensation et la couche limite de convection naturelle 

sont precisees pour un large domaine des parametres du probleme. Ces paramttres apparaissent aprts 
traitement des equations. Des rtsultats importants pour l’ingeniirie concernant le flux global thermique 
entre le cot& condensation et le cot& convection naturelle sont resumes dans cette etude. Finalement, l’effet 
de la resistance thermique de la paroi, constituant la separation des deux reservoirs, sur le flux thermique 

global entre les deux cot&s est determine. 

GEKOPPELTE FILMKONDENSATION UND NATURLICHE KONVEKTION AN DER 
GRENZFLACHE ZWISCHEN EINEM POROSEN UND EINEM OFFENEN RAUM 

Zusammenfassung-Diese Arbeit berichtet iiber eine theoretische Untersuchung, die sich speziell mit der 
Wechselwirkung von Filmkondensation und natiirlicher Konvektion an einer senkrechten Wand, die 
ein Fluidreservoir von einem fluidgesittigten porijsen Medium trennt, befagt. Beide Reservoirs haben 
unterschiedliche Temperaturen. Die Untersuchung besteht aus zwei Teilen: Im ersten Teil findet der 
Kondensationsvorgang im Fluidreservoir statt, die natiirliche Konvektion in der poriisen Schicht. Im 
zweiten Teil wird die umgekehrte Situation betrachtet. Die wichtigsten Wirmeiibertragungs- und Stro- 
mungscharakteristiken in den beiden Gegenstromschichten, dem Kondensatfilm und der Grenzschicht der 
natiirlichen Konvektion, werden iiber einen weiten Parameterbereich dokumentiert. Diese Parameter 
werden durch Grenzschichtformulierung der Bilanzgleichungen erhalten. Wichtige ingenieurmlDige Ergeb- 
nisse beziiglich des Gesamtwarmestroms von der Kondensationsseite zur Seite der nattirlichen Konvektion 
werden in der Untersuchung betrachtet. SchlieBlich wird der Einflug des thermischen Widerstandes der 
Wand, die die Grenzfllche zwischen den beiden Reservoirs bildet, auf den Gesamtwlrmestrom zwischen 

der Kondensationsseite und der Seite der natiirlichen Konvektion berechnet. 

COl-IPRmEHHAR HOCTAHOBKA 3AflArIM 0 IIJIEHOsHO~ KOHAEHCAHMW I4 
ECTECTBEHHOR KOHBEKLHIH BAOJIb FPAHMHbI MEmAY IIOPMCTbIM CJIOEM M 

OTKPbITbIM HPOCTPAHCTBOM 

Arusoraqna-Teopernrecxn accnenoaano ssaeMoneiicrsne Mexny nneeosaoii rronnencanneti N ecrecr- 
BeHHOfi KOHBeKt,liefi BnOJIb BepTHKaJTbHOir CTeHKH, OT~eJt,Ilometi pe3epByap, 3anOJIHeHHbIfi ;I(ALIKOCTbHJ, 

0T nopncroro pesepsyapa, uacbtmenuoro XoiAKOCTbro. 06a pesepeyapa noanepmeearoTcn npn pa3nbtx 
rebrneparypax. Pa6ora COCTOHT ~3 neyx 9acTel: B nepeofi accnenyroTcn KoHpeHcauen B pe3epByape c 

XG,jTKOCTbm A eCTeCTaeHHaa KOHBeKUNR B nOpWTOM CJIOe, 80 BTOpOii SaCTH paCCMaTpnaaeTCs 06paTHan 

CHTyamUJ. OCHOBHMe XapaKTepnCT‘,KH TenJIOnepeHOCa B TeYeHnR B nByX npOTHBOTOYHbIX CSIOIIX, T.e. 

“JIeHKe KOHPeHCaTa B nOrpaHWtHOM CJIOe CO CBO6On~ofi KOHBeKLWefi, OnpeJIeJteHbI LlJUi UIHpOKOrO PAa- 

na30Ha napabfeTpoB 3anaw. 3Ta napaMeTpbt noaBnnro~cn nocne npencraBneHsm onpenennmuxex ypae- 

HeHBti B npe6nameHea nOrpaHW,HOrO CJIOR. 06o61uem pe3yJtbTaTb1, Kacarouuiecn cyMMapHor0 

Ten,rOBOrO “OTOKa OT nC3epByapa, me npOnCXOAHT KOHneHCaUHn, K CJIOIO C CCTeCTBeHHOii KOHBeKWieii. 

Onpe,neneno mmnHrie TennoBoro conpoTseneHwt CreHKri, cocrraannromefi noBepxHocrb pa3nena Memny 

.nByMn pe3epByapaM8, Ha 06meii rennosoii IIOTOK. 


